Inverse Sturm–Liouville Problem with Spectral Parameter in the Boundary Conditions

نویسندگان

چکیده

In this paper, for the first time, we study inverse Sturm–Liouville problem with polynomials of spectral parameter in boundary condition and entire analytic functions second one. For investigation new problem, develop an approach based on construction a special vector functional sequence suitable Hilbert space. The uniqueness recovering potential from part spectrum is proved. Furthermore, our main results are applied to Hochstadt–Lieberman-type problems polynomial dependence not only conditions but also discontinuity (transmission) inside interval. We prove novel theorems, which generalize improve previous direction. Note that all paper investigated general non-self-adjoint form, method does require simplicity spectrum. Moreover, constructive can be developed future numerical solution solvability stability problems.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Sturm-Liouville problems with a Spectral Parameter in the Boundary and transmission conditions

In this manuscript, we study the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. By defining  a new Hilbert space and  using its spectral data of a kind, it is shown that the potential function can be uniquely determined by part of a set of values of eigenfunctions at som...

متن کامل

Inverse Sturm-Liouville problems with transmission and spectral parameter boundary conditions

This paper deals with the boundary value problem involving the differential equation ell y:=-y''+qy=lambda y, subject to the eigenparameter dependent boundary conditions along with the following discontinuity conditions y(d+0)=a y(d-0), y'(d+0)=ay'(d-0)+b y(d-0). In this problem q(x), d, a , b are real, qin L^2(0,pi), din(0,pi) and lambda is a parameter independent of x. By defining a new...

متن کامل

Inverse problem for Sturm-Liouville operators with a transmission and parameter dependent boundary conditions

In this manuscript, we consider the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. We prove by defining a new Hilbert space and using spectral data of a kind, the potential function can be uniquely determined by a set of value of eigenfunctions at an interior point and p...

متن کامل

inverse sturm-liouville problems with a spectral parameter in the boundary and transmission conditions

in this manuscript, we study the inverse problem for non self-adjoint sturm--liouville operator $-d^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. by defining  a new hilbert space and  using its spectral data of a kind, it is shown that the potential function can be uniquely determined by part of a set of values of eigenfunctions at som...

متن کامل

inverse sturm-liouville problems with transmission and spectral parameter boundary conditions

this paper deals with the boundary value problem involving the differential equation ell y:=-y''+qy=lambda y, subject to the eigenparameter dependent boundary conditions along with the following discontinuity conditions y(d+0)=a y(d-0), y'(d+0)=ay'(d-0)+b y(d-0). in this problem q(x), d, a , b are real, qin l^2(0,pi), din(0,pi) and lambda is a parameter independent of x. by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2023

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math11051138